Data Analytics

1. Data Basics
 1.1 Define the concept of data
 1.2 Describe basic data variable types
 • Boolean, numeric, string
 1.3 Describe basic structures used in data analytics
 • Tables, rows, columns, lists
 1.4 Describe data categories
 • Qualitative, quantitative, metadata, big data

2. Data Manipulation
 2.1 Import, store, and export data
 • ETL (extract, transform and load) processes, data manipulation tools (SQL, R, Python), common data storage file formats (delimited data files, XML, JSON)
 2.2 Clean data
 • Purpose and common practices (handling NULL, special characters, trimming spaces, inconsistent formatting, removing duplicates, etc.); validating data
 2.3 Organize data
 • Purpose and common practices (sorting, filtering, slicing, transposing, appending, truncating, etc.)
 2.4 Aggregate data
 • Purpose and common practices (grouping, merging, summarizing, pivoting, etc.)

3. Data Analysis
 3.1 Define and identify practices of descriptive analytics
 • Metrics (aggregate functions such as Sum, Max, Min, Count, Avg/Mean, Mode, Median, Std Dev, Unique values), searching, filtering, interpreting results (identifying patterns and trends)
 3.2 Define and identify practices of diagnostic analytics
 • Data drilling, data mining (anomalies, correlation analysis, patterns, outliers, etc.), data relationships, calculating trends, interpreting results
 3.3 Define and identify practices of hypothesis testing
 • t-Test (student’s t), p-value (test of significance)
 3.4 Define and identify practices of predictive analytics
 • Data relationships, using calculated trends, interpreting regression analyses, interpret results of predictive models; role of Artificial Intelligence (AI) and machine learning
3.5 Define and identify practices of prescriptive analytics
 • Determining expected values; interpreting decision tree output; role of Artificial Intelligence (AI) and machine learning

4. Data Visualization and Communication
 4.1 Report data
 • Effectively display information in tables and charts; explain when and why to disaggregate data
 4.2 Create visualizations from data
 • Identify data visualization practices that minimize the potential for misinterpretation; identify visualization types that represent the underlying data structure and analysis questions (including comparison, time/trend, part-to-whole, relationship, distribution, correlation graphs, box and whisker diagram, scatter chart, scatter plot, bar chart, Sankey diagram, histogram, pie chart, column chart, etc.)
 4.3 Derive conclusions from a data visualization
 • Translate a visual representation of data into words; identify differences between claims based on an analysis and its graphical representation

5. Responsible Analytics Practices
 5.1 Describe data privacy laws and best practices
 • GDPR, FERPA, HIPAA, IRB, PCI, etc.
 5.2 Describe best practices for responsible data handling
 • Methods of handling PII, securing data, and protecting anonymity within small data sets; importance of anonymizing data; trade-offs when balancing interpretability and accuracy; shortcomings of making population-level generalizations with limited sample data
 5.3 Given a scenario, describe types of bias that affect collection and interpretation of data
 • Confirmation bias, human cognitive bias, motivational bias, sampling bias; selecting visualizations/data representations to avoid bias